
Creating Flip-Flop Example
Building Frequency Dividers
Writing a Manual TestBench
Explanation of Key Sections in the Code
Running the Simulation
Wrapping Up

Creating and Using
Testbenches

Welcome to our tutorial on TestBenches in ChipInventor. We’ll create a simple Flip-Flop circuit to
highlight how to set up and run TestBench simulations. Rather than focusing on circuit details, this
guide emphasizes verifying behavior and generating waveforms with the TestBench. By the end,
you’ll know how to efficiently validate digital logic in ChipInventor and be ready for more complex
projects.

1. Click New Project in the top menu.

2. Fill the project details:

Name: FlipFlop TestBench,
Description: Basic example of how to use testBench in ChipInventor.
Type: OpenRoad.

3. Click on Create Chip to start the project.

1. Adding and Configuring the Flip-Flop

2. In the Blocks tab, locate the Flip-Flop D block and drag it to the workspace.

3. Add three inputs (Inputs) named:

Clock, D, and Reset (names can be customized to facilitate your understanding
later).

4. Add one output (Output) and name it Q.

Creating Flip-Flop Example

a. Creating the Flip-Flop Project

b. Flip-Flop in the Blocks Tab

5. Connect the Clock, D, and Reset input pins to the respective Flip-Flop inputs.

6. Connect the Q output pin to the output block.

1. Navigate to the Simulate tab in the top menu.

2. Select Advanced Simulation.

3. In the side menu, click on Run Iverilog to check for potential errors in the generated code.

4. Click on Create VCD to generate a file that enables the visualization of circuit signals.

5. Use the integrated viewer to inspect the Clock, D, Reset, and Q signals.

6. In the bottom-right corner of the VCD page, click on the question mark icon to view
shortcuts that can help improve waveform visualization.

c. Configuring the TestBench

1. Editing Input Values

Locate the Verilog code in the left tab.
Adjust the input signals (for example, changing them from 0 to 1) to test different
scenarios.

2. Re-running the Simulation

Click on Menu and select Run Iverilog to compile the changes.
Click on Create VCD to generate a new waveform file.

d. Improving the TestBench

3. Understanding the Static TestBench

The default TestBench includes predefined sequences.
By manually editing the inputs, you create customized tests to better evaluate the circuit.

If you notice differences in the signals displayed in the newly generated VCD, it means your
changes to the TestBench were successfully applied.

Examine the waveforms generated in the viewer.

e. Analyzing the Results

Ensure that the Q output responds correctly to the Clock signal and the Reset command.
Ask yourself: Does the Q output behavior match expectations regarding the clock and
reset?

In this section, instead of using an external clock signal, we will manually generate input transitions
and define a custom TestBench to verify the behavior of the circuit. The goal is to demonstrate how
to create a manual TestBench in Verilog instead of relying on the automated tools provided by
ChipInventor.

1. Create a new project.

Name: Manual TestBench - Frequency Divider
Description: Manually verifying a frequency divider using a custom TestBench.
Type: OpenRoad

2. Insert multiple Flip-Flop D blocks into the workspace.

The first Flip-Flop will store the initial state.
Each additional Flip-Flop will take the previous one’s output as its own clock signal.

Building Frequency Dividers

3. Connect the Flip-Flops in cascade.

The Q output of each Flip-Flop should be connected to the D input of the next Flip-Flop.
No external clock will be used; instead, we will control the D and Reset inputs manually in
our TestBench.

Since we are not using the automated ChipInventor TestBench, we need to manually define input
signals in Verilog to simulate our circuit.

Open the Verilog code editor in the Advanced Simulation tab.
Replace the automatically generated code with the following manual TestBench

module testbench;

Writing a Manual TestBench

Steps to Write the TestBench:

 reg b0, Reset;

 wire Q1, Q2, led0;

 // Instantiate the Flip-Flops

 D_FLIP_FLOP FF1 (.D(b0), .sync_reset(Reset), .Q(Q1));

 D_FLIP_FLOP FF2 (.D(Q1), .sync_reset(Reset), .Q(Q2));

 D_FLIP_FLOP FF3 (.D(Q2), .sync_reset(Reset), .Q(led0));

 // Generate a clock signal for b0

 initial begin

 Reset = 1;

 b0 = 0;

 #10 Reset = 0; // Release reset

 end

 always #5 b0 = ~b0; // Toggle b0 every 5 time units (creates clock signal)

 // Simulation control

 initial begin

 $dumpfile("testbench.vcd");

 $dumpvars(0, testbench);

 #1000 $finish; // Run the simulation for sufficient time

 end

endmodule

To ensure that the reader can understand and modify the TestBench if needed, let's go through the
main parts of the code:

1. Instantiating Flip-Flops

D_FLIP_FLOP FF1 (.D(b0), .sync_reset(Reset), .Q(Q1));

D_FLIP_FLOP FF2 (.D(Q1), .sync_reset(Reset), .Q(Q2));

D_FLIP_FLOP FF3 (.D(Q2), .sync_reset(Reset), .Q(led0));

Three Flip-Flops are instantiated and connected in cascade.
The first Flip-Flop receives the input signal b0, and each subsequent Flip-Flop takes the Q
output of the previous one as input.
The last output (led0) represents the divided frequency after three Flip-Flop stages.

2. Clock Signal Generation

always #5 b0 = ~b0; // Toggle b0 every 5 time units (creates clock signal)

This command toggles b0 every 5 time units, effectively simulating a 10-time unit period
clock.
As a result, b0 acts as a square wave signal.

3. Reset Initialization

initial begin

 Reset = 1;

 b0 = 0;

 #10 Reset = 0; // Release reset

Explanation of Key Sections
in the Code

end

The Reset signal is initially set to 1 to clear all Flip-Flop outputs.
After 10 time units, Reset is set to 0, allowing normal operation of the Flip-Flops.

4. Simulation Control

initial begin

 $dumpfile("testbench.vcd");

 $dumpvars(0, testbench);

 #1000 $finish; // Run the simulation for sufficient time

end

The $dumpfile("testbench.vcd") command stores all simulation data in a .vcd file for
waveform analysis.
The simulation runs for 1000 time units, ensuring enough time to observe multiple
frequency divisions.

To test the frequency division, follow these steps:

1. Run the TestBench in ChipInventor:

Click on Menu, after Run Iverilog to compile and execute the simulation.

2. Generate the waveform file:

Click on Create VCD to create the .vcd file with signal transitions.

3. Open the waveform viewer:

Inspect b0, Q1, Q2, and led0 to observe how each Flip-Flop divides the input signal
frequency.

Running the Simulation

This tutorial provided a practical guide for creating and validating Flip-Flops using ChipInventor.
Through the practices described, you:

Configured and tested individual and cascaded Flip-Flops.
Used the TestBench to verify the expected behavior of circuits.

These fundamental concepts will serve as a foundation for more advanced projects, enabling the
development of robust and effective digital solutions.

Wrapping Up

