
Creating your project
Project Assembly Steps
Simulation Stage
Synthesis and FPGA Programming
Hardware Validation
Wrapping Up

DC Motor



In this tutorial, you will learn how to implement position and speed control of a DC motor on an
FPGA using the ChipInventor platform. We will use several preconfigured blocks (Verilog modules)
to build a feedback system based on an encoder (measuring the motor shaft position) and pulse
counters for defining position/velocity setpoints. Then, a controller generates a PWM signal to
adjust the motor speed and rotation direction.

Steps to get started:

1. Open ChipInventor.

2. Click on New Project.

3. Fill out the fields:

Name: DC Motor Control
Description: Project for DC motor position and speed control with an encoder and PWM
Type: FPGA

4. Click Create to create the project.

Creating your project



In this step, we identify the essential input signals that enable the motor control system’s
operation.

a) Synchronization Clock (clk)

Description: Clock signal that synchronizes all operations in the digital system, ensuring
all blocks operate in a coordinated manner.
Connection: The clk signal must be connected to the main blocks that require precise
timing, such as encoder, debouncer, pulse_count16, and pwm_control.

b) Encoder Inputs (IO57 and IO56)

Description: Quadrature signals from the encoder used to determine the motor’s current
position.

IO57 → quadA signal
IO56 → quadB signal

Function: These signals are processed by the encoder block to calculate the rotation and
direction of the motor shaft.
Connection: Directly connected to the encoder block.

c) Setpoint Increment Button (key)

Description: Physical button used to increase the desired motor position (setpoint), one
increment per click.
Connection: Connected to the debouncer block, which cleans the signal before sending it
to the pulse_count16, responsible for incrementing the setpoint count.

d) Reset Button (rst)

Description: Button used to reset or reinitialize a value in the system, such as counters
or position reference.
Connection: Passes through a debouncer and then connects to the second
pulse_count16, which can reset the system or perform another control function.

Project Assembly Steps
2.1 System Inputs



 

Ensuring signal integrity is fundamental for system stability. In this step, we eliminate noise and
interference from the physical buttons.

a) Debouncer for the key Button

Function: Eliminates bouncing effects (undesired oscillations) on the key button signal.
Inputs: clk (synchronization signal) and key (increment button).

2.2 Input Signal Processing (Debouncers)



Output: Clean signal, free of noise, sent to the pulse_count16 responsible for the
setpoint.

b) Debouncer for the rst Button

Function: Cleans the reset button signal, removing noise that could trigger multiple
unintended resets.
Inputs: clk and rst.
Output: Stable signal connected to the second pulse_count16.

 



In this step, reference values are defined and managed to guide the motor’s position control.

a) Setpoint Counter (pulse_count16)

Function: Each pulse received (from the key button) increments the setpoint value,
representing the new desired motor position.
Input: Directly from the key debouncer.
Output: Reference value (rp[15:0]) used in the error calculation.

b) Reset Counter (pulse_count16)

Function: Controls reset or adjustment of a second reference parameter, possibly used to
reset position values or counters.
Input: From the rst button debouncer.
Output: Provides an auxiliary value for error calculation or internal resets.

2.3 Defining Setpoint and Reset



 

a) encoder Block

Function: Reads the quadA and quadB signals from the incremental encoder and
converts them into the motor’s current position.
Inputs: clk, IO57 (quadA), and IO56 (quadB).
Output: counter[15:0] representing the accumulated pulse count, i.e., the motor’s
current position relative to the starting point.

2.4 Reading the Current Position (Encoder)



 

a) Subtractor (subtractor16signed)

Function: Determines the error between the desired position (setpoint) and the motor’s
current position.
Inputs:

rp[15:0]: Reference value from the first pulse_count16.
rp[15:0]: Reference value from the second pulse_count16.

2.5 Position Error Calculation



Output: n[15:0], representing the position error. This value indicates the distance
remaining for the motor to reach the target position.

 

a) Proportional Gain (gain16signed)

Function: Amplifies the position error, adjusting the control action intensity accordingly.
Inputs:

2.6 Proportional Gain Application



n[15:0]: Position error from the subtractor.
nb[15:0]: Gain value (e.g., 100).

Output: n[15:0], representing the control signal proportional to the error magnitude.

 

a) Adder (adder16signed)

Function: Adds the proportional control value to a fixed correction or to an integral
control result (if implemented).

2.7 Summing with Additional Corrections (Optional)



Inputs:
Proportional control value.
A constant (e.g., 0 in this project).

Output: Refined control signal for later use.

 

a) Comparator (greater16signed)

2.8 Determining the Rotation Direction



Function: Compares the control signal with zero to determine the motor’s rotation
direction.
Output: out → 1 (rotates clockwise) or 0 (rotates counterclockwise).

 

a) Absolute Module (number_module16)

Function: Converts the control signal to its absolute value, removing the sign information
since the PWM is always positive.

2.9 PWM Duty Cycle Calculation



b) Additional Gain (gain16signed)

Function: Adjusts the absolute value with a specific gain to determine the duty cycle’s
magnitude.
Constant: Example: 10.

c) Saturation (saturation16)

Function: Limits the duty cycle value to a maximum of 255 (8 bits), ensuring the pulse
width does not exceed the permitted range.
Output: n[7:0], which feeds the PWM generator.

 



a) PWM Control (pwm_control8)

Function: Generates the PWM signal responsible for motor speed control, based on the
previously calculated duty cycle.
Inputs: clk and duty_cycle[7:0].
Output: pwm, a signal proportional to the desired intensity.

 

2.10 PWM Signal Generation

2.11 Direction Control and PWM Application



a) Demux (demux2)

Function: Routes the PWM signal to one of two outputs, depending on the calculated
rotation direction.
Inputs:

in: PWM signal from pwm_control.
select: Direction signal from greater16signed.

Outputs:
outa: IO69 → PWM signal for clockwise rotation.
outb: IO68 → PWM signal for counterclockwise rotation.



 

And, at the end, your project should be something like this:

 



Before programming the FPGA, it's essential to verify that your project behaves as expected in the
simulation environment. This step helps catch potential logic or connection errors, saving time and
avoiding issues in the physical implementation.

1. Go to the Simulate tab in the top menu of ChipInventor.
2. Choose the simulation type based on your analysis needs:

Advanced Simulation (with VCD generation and detailed signal monitoring).
Dynamic Simulation (for real-time testing of inputs/outputs in a simplified interface).

If using Advanced Simulation, click Run Iverilog to compile and simulate the design.
Confirm that the simulation compiles without errors.
If there are any compilation issues, review your connections and block configurations
before proceeding.

Focus on analyzing the key signals that represent the critical functionalities of your system. Here
are the main ones you should observe during simulation (especially when generating a VCD file for
waveform analysis):

Signal Description

encoder counter (w_7) Should increment or decrement based on changes in
quadA and quadB.

setpoint (w_3) Should increment with each press of the key button.

error (w_5) Difference between setpoint and encoder position; check if
it makes sense.

gain outputs (w_6, w_13) Scaled values of the error and control signals; verify
proportionality.

control result (w_8) Combined control output used to define motor behavior.

duty cycle (w_14) 8-bit signal defining PWM intensity (0-255 range).

PWM signal (w_11) The actual pulse-width modulated signal controlling motor
speed.

Simulation Stage

3.1 Accessing the Simulation Environment

3.2 Running the Simulation

3.3 Signals to Monitor



Signal Description

motor direction (w_10) Binary signal indicating rotation direction
(forward/reverse).

Outputs (IO69, IO68) PWM signals routed according to direction (one active at a
time).

Confirm that:
The encoder counter (w_7) updates properly when you simulate encoder signals
(quadA and quadB).
The setpoint counter (w_3) increases with each key press.
The error signal (w_5) responds logically as the setpoint and encoder values
change.
The duty cycle (w_14) remains within 0 to 255 and adjusts as the error varies.
The direction control (w_10) changes according to whether the motor needs to
move forward or backward.
Only one of the outputs (IO69 or IO68) is active at any time, consistent with the
rotation direction.

If you encounter compilation errors:
Check all block connections.
Ensure no data type mismatches (e.g., 16-bit vs. 8-bit signals).

If simulation behavior is unexpected:
Review the control logic (error calculation, gain factors).
Validate the encoder signals (quadA and quadB) timing and transitions.
Confirm that debouncer outputs behave correctly on button presses.

Run the simulation as many times as necessary until the system performs as expected.

 

3.4 Interpreting the Results

3.5 Troubleshooting



After confirming that everything works in simulation:

1. Click on the Synthesize tab.

2. Select Start Synthesis.

3. Wait until all items turn green (successful).

4. Connect your FPGA board to the computer via USB.

5. In ChipInventor, choose the correct serial port (usually the “Enhanced” port).

6. Click Flashing to program your FPGA with the generated bitstream.

Synthesis and FPGA
Programming



 



After programming, perform practical validation:

1. Connect the DC motor and encoder physically to the FPGA board (using appropriate drivers for
motor current/voltage).

2. Power the system with the proper power supply.

3. Press the configured button in the project (if it is used to increment the setpoint) and observe:

Whether the motor rotates in the correct direction as you increase the setpoint.
Whether, upon changing the reference or pressing rst, the motor responds correctly
(adjusting speed or returning to zero position, depending on the implementation).
The PWM should vary to correct the difference between desired and actual position.

And at the end, your circuit should look like this:

image.png

DC Motor Circuit

Hardware Validation

If you see undesired behavior:
- Check if the encoder direction is inverted;
- Adjust the controller gains (the constants used in gain16signed);
- Confirm that the PWM and motor speed are not saturating (very high values might keep
the motor at high speed continuously).

https://design.bookstack.vonbraunlabs.com.br/uploads/images/gallery/2025-03/L5Rrn2oKtqjTxQkY-image.png


DC Motor Testing



Congratulations! You have developed a DC motor speed and position control system in
ChipInventor. This project covered creating, simulating, synthesizing, and testing in hardware. You
used pulse counters, an encoder, arithmetic operations, PWM generation, and direction selection
via a demultiplexer.

From here, you can:

Improve your controller (for example, by adding a derivative term or filters).
Integrate communication interfaces (UART, SPI, etc.) to monitor position and speed in real
time.
Explore other sensing methods for more sophisticated motor control.

Keep exploring ChipInventor, and take on progressively more complex digital design and
control projects!

 

Wrapping Up


