
Creating Project
Understanding the Project and the Blocks Used
Connecting the Blocks
Project Simulation
FPGA Synthesis and Programming
Hardware Validation
Wrapping Up

RISC-V Education



In this tutorial, you will learn how to develop a basic RISC-V project within the ChipInventor
platform. We will cover everything from creating the project and setting up the main modules
(processor, memories, registers, etc.) to simulating and testing on hardware. The structure follows
the same pattern used in previous tutorials (such as “Distance Sensor” or “DC Motor”).

Initial Steps:

1. Open ChipInventor.

2. Click on New Project.

3. Fill in the fields:

Name: RISC-V Basic
Description: Basic project to understand the RISC-V architecture in ChipInventor
Type: FPGA

4. Click Create to generate the new project.

This environment is where you will add all the blocks (Verilog modules) and make the necessary
connections to have a functional RISC-V system.

 

Creating Project



Below are the main blocks that make up our RISC-V project, in a structure similar to the previous
tutorials.

The central processor, responsible for fetching, decoding, and executing instructions, as well as
handling memory/register reads and writes.

Main Inputs:
clk: the system clock
reset: global reset signal
instruction: the instruction from the instruction memory (imem)
read_data: data returned by the data memory (blockram)

Main Outputs:
pc: the program counter value
mem_write_Mem: enables writes to data memory
write_data: the value to be written to data memory
alu_result_Exec: result of arithmetic/logic operations
reg_write_WB: enables writes to the register file

Function: The instruction memory for RISC-V.
Behavior: Receives pc and returns the corresponding instruction on instr.

Function: Data memory for load and store operations.
Behavior: Used by the processor to read (read_data) or write (write_data) data at the
address (addr) provided by the ALU.

Function: The RISC-V register file (x0 to x31).

Understanding the Project
and the Blocks Used

franken_riscv

imem

blockram

register



Behavior: Reads or writes values based on control signals (reg_write_WB, RS1, RS2,
RD).

Function: Inverts the input signal (commonly used for generating an active-low
reset).

Function: Generates a 1 Hz clock for slowing down and making the system operation
more observable (optional).

Function: Displays data on a screen, useful for seeing register values or debug
messages.

Function: Converts characters into bitmaps to be displayed by screen.

Function: Support modules for signal routing, bus multiplexing, and instruction
decoding.

 

Finally, a top module integrates all these components, mapping outputs to physical pins.

 

inverterC

one_hz_clock

screen (optional)

textEngine (optional)

mux4_8, bus_to_wires, bus_to_bus_4_5, stringbyte,
alu_decoder, and others



To assemble your project in the ChipInventor block diagram:

1. Drag each block (e.g., franken_riscv, imem, blockram, register) onto the workspace.

2. Connect the signals according to the Verilog code or as described in previous
tutorials. Examples:

The clk signal (from one_hz_clock or an Input Pin) should go to the clk input of
franken_riscv, register, blockram, and other modules.
reset (from inverterC or another reset block) connects to the reset inputs of these
modules.
The pc output of franken_riscv is fed into imem, which returns instr back to franken_riscv
via instruction.
For data memory, alu_result_Exec serves as the address (addr), write_data is the write
input, and read_data is the output from blockram.
RS1, RS2, RD, reg_write_WB, and write_reg_WB connect the franken_riscv to the register
module.

3. If you plan to use a display, connect screen and textEngine as indicated.

4. Save your diagram and ensure all modules have correct clock, reset, and signals.

Connecting the Blocks



 



Before programming your FPGA board, validate the RISC-V operation in simulation:

1. Click Simulate at the top of the ChipInventor interface.

2. Choose Advanced Simulation to see detailed waveforms.

3. Click Menu → Run Iverilog.

4. If there are no errors, observe key signals such as:

pc: should advance each cycle (unless there is a stall).
instruction: the instruction read from imem.
alu_result_Exec: ALU results.
mem_write_Mem and write_data: enabling and value of writes to memory.
read_data: data returned by memory on a load operation.

5. If you encounter errors, review connections, bus widths, or clock/reset parameters.

6. Repeat simulation until everything behaves as expected.

 

Project Simulation



After confirming your simulation is correct:

1. Go to the Synthesize tab.
2. Select Start Synthesis.
3. Check that all items turn green (successful synthesis).
4. Connect your FPGA board to the computer via USB.
5. Choose the appropriate serial port (often labeled “Enhanced”).
6. Click Flashing to program the FPGA with the bitstream.

FPGA Synthesis and
Programming



 



With the FPGA programmed, proceed to practical testing:

1. If you use an external clock, ensure it is at the desired frequency. If using one_hz_clock,
confirm it is generating a 1 Hz signal.

2. If you have LEDs or a screen, check if they show expected behavior (e.g., a LED lighting
up when the processor writes to memory).

3. If you have a reset button, verify that pc and registers reset appropriately.
4. If there is a UART, connect it to a serial interface to observe possible messages or output

values.
5. Adjust the contents of imem (the RISC-V program) or system parameters (clock, reset, bus

widths) if needed.

 

Hardware Validation



Congratulations! You have built a basic RISC-V project in ChipInventor. This process included:

Creating the project and importing modules
Interconnecting the processor (franken_riscv) with memories and peripherals
Detailed simulation
Synthesis and FPGA programming
Real hardware testing

From here, you can:

Add custom instructions or more complex programs in imem.
Integrate additional peripherals like I2C, SPI, UART, or displays.
Enhance the ALU with multiplication, division, or other operations.
Experiment with simple embedded operating systems or interrupt handling.

Keep exploring ChipInventor and creating increasingly sophisticated digital design and RISC-V
projects!

 

Wrapping Up


