
SPI Protocol Overview
Creating the Project in ChipInventor
Blocks Used
Top-Level Connections
Simulation
FPGA Synthesis and Programming
Hardware Validation
Wrapping Up

SPI Protocol



SPI (Serial Peripheral Interface) is a synchronous, full-duplex communication protocol used for high-
speed data exchange over short distances. It follows a master–slave architecture with four primary
signals:

SCLK (Serial Clock): Clock signal generated by the master to synchronize data
transfers.
MOSI (Master Out Slave In): Data line from master to slave.
MISO (Master In Slave Out): Data line from slave to master.
CS_n (Chip Select, active-low): Signal used by the master to select the slave device.

Bits are shifted out on MOSI and shifted in on MISO on each clock edge, according to the configured
clock polarity (CPOL) and phase (CPHA).

SPI Protocol Overview



1. Open ChipInventor.

2. Click New Project.

3. Fill in the fields:

Name: SPI Communication Tutorial
Description: SPI Master–Slave Data Transfer with LED Display
Type: FPGA

4. Click Create.

Creating the Project in
ChipInventor



Block Function

spi_master Generates SCLK, MOSI, and CS_n; sends incremental byte
values

spi_slave Samples MOSI on SCLK rising edge; outputs data_valid
pulse

data_register Synchronously latches input d into q when load = 1

LEDs Displays the 8-bit output from the register

Slave Blocks: On one workstation, instantiate and configure the spi_slave and data_register
blocks. Record a GIF showing:

Blocks Used



Master Block: On a separate workstation, instantiate and configure the spi_master block. Record
a GIF that demonstrates:



 



In this project, the FPGA Master and FPGA Slave are interconnected as follows:

Common signals (both FPGAs):
clk: system clock
rst_n: active-low reset

Master → Slave connections:
sclk: serial clock
mosi: master data output
cs_n: chip select (active-low)

Top-Level Connections



Slave internal connections:
data_valid → load input of data_register
data_out[7:0] → d input of data_register

Final output:
data_register.q[7:0] → LEDs on the board





1. Go to the Simulate tab and select Advanced Simulation.

2. Run Iverilog.

3. Check the console for compilation errors.

4. In the waveform viewer, monitor key signals:

spi_master.byte_counter
spi_slave.shift_reg
data_valid
data_out

5. Confirm that on each deassertion of CS_n, eight bits are received, data_valid pulses, and
data_out matches the transmitted byte.

 

Simulation



1. Open the Synthesize tab and click Start Synthesis.

2. Wait until all synthesis items turn green.

3. Connect your FPGA board via USB.

4. Select the appropriate programming port.

5. Click Flashing to program the master and slave bitstreams.

FPGA Synthesis and
Programming



 



1. Power on both FPGAs.

2. Observe the slave’s LEDs—they should display the incrementing byte sent by the master.

3. If the LEDs do not update correctly:

Verify the polarity and wiring of rst_n.
Check connections for sclk, mosi, and cs_n between the boards.
Adjust the CLK_DIV parameter in spi_master for proper timing.

4. (Optional) Use a logic analyzer to probe the SPI lines and verify signal integrity.

Hardware Validation



 



Congratulations! You have developed a complete SPI communication project using the
ChipInventor platform.

Now that you understand the SPI protocol, you can expand this knowledge and implement
communication with other sensors and devices.

Wrapping Up


