
Understanding the UART Protocol
Creating Your Project in ChipInventor
Blocks Used in the Project
Connecting the Blocks
Project Simulation
FPGA Synthesis and Programming
Hardware Validation
Wrapping Up

UART Protocol



UART (Universal Asynchronous Receiver-Transmitter) is a widely used asynchronous serial
communication protocol for exchanging data between devices, such as FPGAs and computers.

Unlike synchronous protocols, UART does not use a shared clock signal. Instead, data is sent at a
predefined transmission rate (baud rate) agreed upon by both devices. Each transmitted byte
includes:

1 start bit
8 data bits
1 stop bit

During transmission, the data is sent bit by bit through the TX (transmit) line, while the receiving
device reads these bits from the RX (receive) line, synchronizing with the established timing.

Below is a placeholder for an image that illustrates how UART works (start bit, data bits, stop bit,

idle state, etc.).

 

Understanding the UART
Protocol



In this tutorial, you will create a serial communication system using UART with three main blocks:
uart_rx, uart_logic_const, and uart_tx. When a character is received via UART, the system
compares it with a predefined value and toggles an LED if it matches.

1. Open ChipInventor.

2. Click on "New Project".

3. Fill in the fields as follows:

Name: UART Communication FPGA
Description: UART system with RX, logic comparison, and TX
Type: FPGA

4. Click "Create".

Creating Your Project in
ChipInventor

Step-by-Step:



The project uses the following blocks based on the provided Verilog modules:

uart_rx: Responsible for receiving data from the UART port and indicating when a byte
has been completely received.
uart_logic_const: Compares the received byte with a predefined character and toggles
an LED state.
uart_tx: Sends data via the UART serial port.
Input/Output Pins:

clk: Main system clock
uart_rx: UART data input
uart_tx: UART data output
b0: Reset button
led0: Indicator LED

Blocks Used in the Project





Assemble the project with the following configuration:

Inputs:
clk → system clock
uartRx → UART input pin

Outputs:
rxByte → connects to the logic block
byteReady → connects to both the logic block and uart_tx

Inputs:
clk → system clock
rxByte → from rxByte output of uart_rx
byteReady → from byteReady output of uart_rx
compareChar → constant value (e.g., 8’h61 = 'a')

Output:
signal → connects to LED (led0)

Inputs:
clk → clock
reset → button (b0)
tx_data → receives rxByte from uart_rx
tx_data_valid → receives byteReady from uart_rx

Output:
tx_pin → connects to the UART TX output pin
tx_data_ready → not used in this simple project

Connecting the Blocks

uart_rx Block

uart_logic_const Block

uart_tx Block



Final Connections:

Block/Pin Connection

clk All blocks

uart_rx UART RX input

uart_tx UART TX output

b0 Reset signal for uart_tx

led0 Output from signal of uart_logic_const

 





1. Go to the Simulate tab in the top menu.
2. Select Advanced Simulation.
3. Click on Run Iverilog to compile and simulate.
4. Check if the simulation runs without errors.

If errors occur, review the block connections as described.

Project Simulation



Once the simulation is validated:

1. Go to the Synthesize tab.

2. Click Start Synthesis.

3. Connect your FPGA to the computer via USB.

4. Select the correct serial port (usually labeled “Enhanced”).

5. Click Flashing to program the FPGA.

FPGA Synthesis and
Programming



 



1. Access the Main tab.

2. Click on Serial Console.

3. Set the baud rate to 115200.

4. Send a character via the serial terminal.

If the character matches the predefined value (8’h61), the LED should toggle.
The same character will also be sent back through the TX pin (echo).

Hardware Validation





 



Congratulations! You’ve implemented a complete UART system with receiving, comparison, and
data echo. This practice reinforces your understanding of serial communication, logical
comparison, and module integration in FPGA using ChipInventor.

Try experimenting with different characters, adding more conditions, or expanding the system with
multiple LEDs and control commands!

Wrapping Up


